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ABSTRACT

The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current

TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM

era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The al-

gorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector

to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and

GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel

uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic

assumptions in channel uncertainties. Consistency among different radiometers is extremely good over

oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only

at the time of day that different sensors operate. While accounting for only a modest amount of the total

precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the

availability of high-frequency (166 and 183GHz) channels. In general, comparisons against early versions of

GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more

carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product

for its a priori database. The combined algorithm represents a physically constructed database that is con-

sistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian

approach that can be extended to an arbitrary passive microwave sensor.

1. Introduction

The Goddard profiling (GPROF) algorithm was first

developed in the early 1990s to retrieve surface rainfall

and its vertical structure from spaceborne passive mi-

crowave observations (Kummerow and Giglio 1994).

The impetus for that work came from the Tropical

Rainfall Measuring Mission (TRMM) (Simpson et al.

1988) that was seeking to quantify not only the surface

rainfall but also the three-dimensional structure of la-

tent heat release in the tropics. While the primary

structure information from TRMMwas to come from its

first-ever spaceborne rain radar, there was a great desire

to expand the profiling work to the TRMM Microwave

Imager (TMI) in order to gain both from its much wider

swath and pave the way to utilizing available sensors

such as the Special Sensor Microwave Imager (SSM/I)

(Hollinger et al. 1990), which had been available since

1987. The algorithm was thus designed from its very

inception to be parametric in the sense that the algo-

rithm would work with any passive microwave sensor as

long as the sensor characteristics and channel errors

were properly specified. While it has taken a number of

iterations, this paper describes GPROF 2014, the fully

parametric algorithm, as well as the recent versions of

the algorithm leading to it. The current impetus is pro-

vided by the Global Precipitation Measurement (GPM)

(Hou et al. 2014), which explicitly seeks to provide
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consistent 3-hourly rainfall products from a constellation of

operational and dedicated passive microwave radiometers.

The origins of the GPROF algorithm lie in the

Bayesian formulation as outlined byRodgers (2000) and

first applied to clouds and precipitation by Evans et al.

(1995). The approach is ideally suited for undercon-

strained inversions and was adapted to precipitation

profiles as first described by Kummerow et al. (1996).

Other schemes employing the Bayesian methodology,

such as Olson et al. (1996), Marzano et al. (1999), Bauer

et al. (2001), and Viltard et al. (2006), soon followed as

the scheme allowed for the incorporation of additional

information becoming available from radars and cloud-

resolving models. The Bayesian formulation in these

early schemes generally assumed that cloud-resolving

model output could be used to accurately describe the

global population of raining clouds that serve to con-

strain the final solution. Using Bayes’s formulation (e.g.,

Rodgers 2000), this can be formalized as

P(x j y)5P(y j x)P(x)
P(y)

, (1)

where P(x j y) is the posteriori probability of observing a
particular rainfall structure x, when a set of brightness

temperatures Tb, denoted by the vector y is observed.

Term P(y j x) is the probability of making observation y

when x is present, while P(x) and P(y) are the a priori

probabilities of x and y, respectively. The latter may

come from global statistics of precipitating cloud states

and observations, respectively. The determination of

P(y j x) requires a radiative transfer model that translates

between state and observation space. This model may

also be used to compute P(y) if P(x) is assumed to fully

describe the a priori distribution of x. The a priori dis-

tribution of clouds, as mentioned before, was generally

taken from cloud-resolving models as described by

Tripoli (1992) and Tao and Simpson (1993).

One particular problem associated with these rainfall

retrievals is that the model that connects states and ob-

servations—that is y5F(x)1 e (where e is the modeling

error)—is generally nonlinear and generally exhibits non-

Gaussian error statistics. This more or less precludes

variational solutions. It is instead more common to seek

the expected value of x. Frompractical considerations, the

expected value is often expressed as (Olson et al. 1996)

E(x)5
�
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even though the formulation in Eq. (2) makes the as-

sumption that P(x) and P(y) are well known. The Tb

error covariance R must still be estimated from

measurement and forward model errors in this

formulation.

The above-mentioned solution allows a single set of

cloud profiles, which might come from a global cloud-

resolving model simulation, along with the appro-

priate radiative transfer simulations to be used for

constructing a priori databases for a number of different

radiometers. The fully parametric implementation of this

scheme, however, was difficult because of uncertainties

and computational constraints on cloud-resolving models

at the time that these schemes were being developed.

Kummerow et al. (2006) explored the uncertainties in the

Bayesian retrievals and concluded that the majority of

the errors could be associated with incompleteness and

incorrectness of the profiles making up the a priori cloud

database. The incompleteness problemwas primarily due

to the inability to run global cloud-resolving models over

any significant period of time. Simulations consisting of

primarily individual case studies did not reflect the actual

distribution of observed storms. More importantly, they

did not reflect the correct ratios of raining and nonraining

scenes that would bias retrievals toward raining condi-

tions if other steps were not taken.

The solution to the rain versus nonrain problem

employed by nearly all the early Bayesian schemes, in-

cluding Kummerow et al. (2011), was to add a ‘‘screen-

ing’’ routine that first separated rain from nonraining

scenes based upon simple brightness temperature

thresholds or sometimes cloud liquid water thresholds.

This limited the retrievals to raining scenes, and a priori

databases were generated in such a way as to match the

criteria used to define rain in the screening algorithm.

These screening algorithms, however, were often em-

pirical and thus not parametric. The empiricism was

necessary because different sensors had different spatial

resolutions, view angles, and channel combinations.

Algorithms that used cloud water thresholds would fare

better, but only if the cloud water retrieval was

physically based.

Similar shortcomings were also considered in relation

to convective versus stratiform clouds. If simulations

consisted of toomany convective clouds without enough

stratiform rain, then the a priori statistics and thus the

Bayesian retrieval would skew retrievals toward con-

vection. This problem too was addressed by partitioning

convective and stratiform scenes in both the observa-

tions and a priori databases. While details differed be-

tween methods, the basic need for these steps was the

result of the same problem—namely, that it was difficult

to get globally representative cloud profiles from a

limited set of cloud-resolving model simulations.

The second error inherent in the approaches that used

the cloud-resolving model simulations was the errors in
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the models themselves. A number of studies (e.g., Wang

et al. 2007; Caine et al. 2013; Roh and Satoh 2014) ad-

dress the shortcoming in cloud microphysics that had a

tendency toward too much ice in convective clouds.

Such errors could not be easily corrected and simply

became part of the algorithm and its overall uncertainty

(Kummerow et al. 2006).

2. The semiparametric algorithm

The first attempt at making the algorithm more

parametric was implemented with GPROF 2010 or

TRMM 2A12, version 7, in the TRMM processing

system. Over oceans this version abandoned the cloud-

resolving model (CRM) database in favor of an obser-

vationally generated database that faithfully reproduced

raining, nonraining, as well as convective and stratiform

rain types over the oceans. The details are discussed in

Kummerow et al. (2011). They are reviewed here only

for completeness. First-guess profiles are taken directly

from the TRMM precipitation radar (PR) retrievals

Iguchi et al. (2000). If no precipitation is present, then an

‘‘optimal estimation’’ procedure is used with TMI

brightness temperatures to retrieve the background

water vapor, cloud water, and surface wind speed as

described in Elsaesser and Kummerow (2008). In addi-

tion, sea surface temperatures (SST) are from Reynolds

et al. (2007, 2008). Where precipitation is present in

the PR footprint, the individual precipitation profile is

matched to a library of available cloud-resolving model

profiles. The primary role of the cloud models in this

scheme is to associate parameters such as cloud water

and ice to the precipitation profile as they impact the

TMI brightness temperatures but are not directly ob-

served by the radar. Forward radiative transfer compu-

tations are then performed and the resulting brightness

temperatures are convolved to the appropriate TMI

channels. Observed and simulated Tbs are compared.

Differences are addressed by adjusting the PR pre-

cipitation profile—either by adding light precipitation

below the radar’s detection threshold or by adjusting

the drop size distribution assumed by the radar. The

resulting hydrometeor profile is thus based upon a

cloud-resolving model but selected only if it fits both

the observed reflectivity profile from the radar and

brightness temperatures from the TMI radiometer.

The database is thus fully representative of actual rain-

fall structures although errors in the retrieval or cloud-

resolving model microphysics could still affect the

overall correctness of the a priori database. One year of

coincident radar/radiometer swaths, yielding approxi-

mately 65 million database entries, are used in GPROF

2010 to construct the a priori databases. This replaces the

limited cloud-resolving model simulations used in earlier

versions of the algorithm and eliminates the need to

predetermine if pixels are raining or assigning convective/

stratiform properties. The retrieval is thus fully Bayesian.

The robust ocean database also allows the Bayesian

retrieval to limit its search to profiles consistent with the

observed background conditions. SST and total pre-

cipitable water (TPW) are used to subset the database.

This is convenient because 1) both can be readily ob-

tained from either ancillary sources or the radiometers

themselves and 2) there was strong evidence that dif-

ferent large-scale environments, as defined by SST and

TPW, led to significantly different cloud structures

(Berg et al. 2006).

The operational a priori database is built by first ag-

gregating all the entries in a given SST/TPW bin. Bin

sizes of 1K in SST and 1mm in TPW are used. Certain

combinations of SST and TPW (e.g., SST 5 298K and

TPW 5 45mm) are very common in the tropics and

sometimes exceeded 300 000 entries in a single bin.

While such bins are conceptually manageable, they are

computationally very expensive. Profiles with self-

similar Tb were therefore clustered into a maximum of

1200 unique clusters. Commonly available K-means

(Forgy 1965; Hartigan and Wong 1979) clustering rou-

tines were not used because they do not preserve rainfall

variance within individual Tb intervals and can thus bias

the sensitivity of retrieved rainfall rates to assumed

uncertainties. Instead, a bottom-up hierarchical clus-

tering approach was implemented (Elsaesser and

Kummerow 2015). A comprehensive test was performed

to show that retrievals using all profiles gave the same

result as retrievals using 1200 unique clusters to within

0.2% in rainfall. When the inverse occurs—namely, that

not enough entries are available near the edge of the

table (e.g., SST 5 298K and TPW 5 10mm)—the al-

gorithm automatically expands the search radius over

SST and TPW beyond 1K and 1mm until it has a min-

imum of 1200 profiles available. The algorithm sensi-

tivity to errors in the prescribed SST and TPW are

explored (in Tables 3 and 4) in connection with the fully

parametric algorithm.

The same Bayesian approach was not adopted for

land backgrounds in GPROF 2010. The main difficulty

over land was the lack of a physical retrieval from the

TRMM PR and TMI. This was due to unknown surface

emissivities and the lack of any discernable emission

signal. Forced to work with only the scattering signal

and having historical difficulties in separating cloud-

related scattering signals from cold surfaces, the GPROF

2010 land code made substantial improvements over

the previous version by improving the convective

and stratiform rainfall delineation and the empirical

DECEMBER 2015 KUMMEROW ET AL . 2267

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/09/22 05:00 PM UTC



relationships between the surface rainfall rates and

85-GHz brightness temperatures for convective and

stratiform rain. These changes significantly lower the

overestimation by TMI globally and over large sec-

tions of central Africa and South America from

GPROF 2004 (Liu and Zipser 2009; Wang et al.

2009). Details of the GPROF 2010 land algorithm are

documented in Gopalan et al. (2010); only a brief

review is given here for completeness. A scattering

index (Grody 1991; Ferraro et al. 1994, 1998) is used

to determine whether the pixel is raining. Once the

pixel is determined to be raining, a modification from

McCollum and Ferraro’s (2003) convective and

stratiform percentages (CSP) within an 85-GHz pixel

is developed to reduce the global TMI wet bias

caused by the overly aggressive convective rain dis-

tribution. The next step is to develop the relation-

ships between the surface rainfall rates (RR) for

convective and stratiform rain and 85-GHz vertically

polarized brightness temperatures (TB85V). Using

the entire record of TRMM TMI and PR collocations,

a more robust set of RR-TB85V is developed and is

shown in Eqs. (3) and (4):

RR
conv

520:000 011 769TB85V3 1 0:008 026 7TB85V2

121:9461TB85V1 182:677

(3)

RR
strat

520:0708TB85V1 19:7034, (4)

where RRconv is the rainfall for convective pixels,

RRstrat is the rainfall from stratiform pixels, and TB85V

is the 85-GHz vertically polarized channel brightness

temperature. Finally, the rainfall rate is expressed as the

combined convective and stratiform rain, RR 5
RRconv(CSP) 1 RRstrat(1 2 CSP).

The algorithm was thus a hybrid scheme with a

Bayesian formulation over oceans coupled with a

regression-based approach over land and coastal re-

gions. The general algorithm flow is depicted in Fig. 1.

The only aspect of GPROF 2010 not covered above is

the extension of the a priori databases over oceans to

colder backgrounds than those observed directly by

TRMM. While the code was designed to work in the

tropics, the algorithm could be extended to higher lati-

tudes by removing the bottom layers of existing profiles

to represent colder and drier environments. This of

course assumes that cloud structures in the extratropics

resemble tropical clouds from the appropriate temper-

ature level upward. While this is certainly not true, the

method provided a solution at higher latitudes until the

GPM’s combined algorithm profiles could fill in the rest

of the globe. Zonal means for 2005 are shown in Fig. 2

separately for ocean and land for TMI, the Advanced

Microwave Scanning Radiometer for EOS (AMSR-E),

and three Special Sensor Microwave Imager (SSM/I)

instruments aboard the F13, F14, and F15 satellites. The

oceanic precipitation, which is more or less parametric,

is seen to be quite consistent between sensors. The

precipitation differences in the land algorithm are due to

two main issues. The first is due to differences in the

precipitation screening schemes, whereby temperature

thresholds originally derived for SSM/I were adapted to

the remaining sensors. These thresholds are different for

each of the sensors and very difficult to make completely

FIG. 1. Algorithm flow for GPROF 2010.
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consistent. Second, different sensor sampling times that

observe the diurnal cycle of precipitation only twice per

day do not result in the identical precipitation no matter

the time scale one averages. This is shown in the next

section on the fully parametric algorithm, when the

similar sensor land differences are discussed further.

Given the consistency between the satellites’ esti-

mates over ocean shown in Fig. 2, trends can also be

examined by applying the algorithm to all SSM/I radi-

ometers going back to SSM/I F8 launched in July of

1987. Figure 3 shows oceanic mean precipitation be-

tween 708S and 708N from successive SSM/I and Special

Sensor Microwave Imager/Sounder (SSMIS) sensors.

While these sensors are different, GPROF 2010 does

not make use of the sounding channels over ocean.

The products from these two sensors are therefore quite

similar. Only ocean trends are shown to avoid sensor

differences that can be seen in Fig. 2 over land. As can be

seen, different sensors are very consistent across the

overlap periods, giving confidence that any trends are

physical or physically based rather than sensor artifacts.

A larger difference can be seen with the initial record of

SSMIS F16, which is slightly more than 3% lower than

the SSM/I F13 and F14 records for 2006–09. We believe

this to be related to calibration uncertainties in the early

F16 record, which was difficult to make fully consistent

with the other sensors.

Profile information is reported by GPROF 2010 only

over ocean, where profile information from the profile

database is carried along with surface precipitation.

Because the land algorithm is empirical, no profile in-

formation is available. Rather than reporting rain, cloud

water, snow, graupel, and cloud ice separately, the

profile information is reported as a scale factor for 1 of

100 characteristic profile shapes for each hydrometeor

species. This reduces the output volume significantly

and emphasizes the fact that although the a priori da-

tabase may contain the same number of independent

layers as the PR used to construct it, the passive mi-

crowave retrieval does not have the same level of in-

formation in its vertical profiles.

3. The fully parametric algorithm

The oceanic portion of the GPROF 2010 algorithm

was largely parametric. In practice, the only sensor-

specific portions of the algorithm were the water vapor

determination and the forward model uncertainties

assigned to individual sensors in the retrieval. While the

water vapor was retrieved from an optimal estimation

procedure (Elsaesser and Kummerow 2008) and is thus

fully parametric as implemented, the retrieval does not

converge in areas of moderate to heavy precipitation.

For these pixels, the TPW value was interpolated from

the final threshold, where the optimal estimation algo-

rithm was deemed to have converged. Different sensors,

because of channel combinations and spatial resolution,

converged differently, leaving different areas to be

FIG. 2. Zonal mean precipitation corresponding to GPROF 2010 for 2005 for (left) ocean and

(right) land.
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interpolated. This coupled with the tendency for higher

TPW values in precipitating regions caused biases in

TPWand the subsequent rainfall retrieval. This problem

is circumvented in GPROF 2014 by using TPW from

reanalyses [the Japanese Global Analysis (GANAL)

(JMA 2000) for near-real-time operations, and GPM

standard products and the European Centre for

Medium-Range Weather Forecasts (ECMWF) interim

reanalysis (ERA-Interim) (Dee et al. 2011) for all other

products]. The second aspect of the algorithm that was

not fully parametric was the channel uncertainties as-

signed to sensors. For TMI, these uncertainties were

determined by examining the residual differences be-

tween computed and observed Tb in the construction of

the database itself. This, however, is not appropriate for

other sensors. A set of coincident overpass datasets was

used to adjust forward model uncertainties for radiom-

eters other than TMI.

Over oceans, GPROF 2014 uses the same GPROF

2010 database and subsetting into unique SST and TPW

bins. Because the GPROF 2010 database is physically

constructed to be consistent with both TRMM PR and

TMI, it is straightforward to compute Tb for additional

GPM Microwave Imager (GMI) channels, incidence

angles, and horizontal resolutions. The algorithm does

not make use of the higher-frequency channels of GMI

(165 and 183GHz) over ocean, as there is little confi-

dence that these are properly constrained by the TRMM

database. Given that the algorithm over ocean is pri-

marily emission based, this is not viewed as a major

shortcoming. Once enough radar data are available

from the GPM dual-frequency precipitation radar

(DPR), a new oceanic database will be constructed that

does include the higher-frequency channels.

Over land, the GPROF 2014 database uses the Na-

tional Mosaic and Multi-Sensor Quantitative Pre-

cipitation Estimation (NMQ) project (Zhang et al. 2011)

radar data with coincident overpasses from each GPM

constellation member to create observational databases

of surface rainfall and associated Tb. The GMI bright-

ness temperatures, which were not available before the

launch of GPM, were simulated with the SSMIS sensor

for this version of the algorithm. The databases are

constructed for bins of equal land surface temperature

(LST), TPW, and surface type. The bin sizes for LST and

TPW follow the GPROF 2010 approach of using 1K in

LST and 1mm in TPW. Surface types are defined for the

GPROF 2014 algorithm as having self-similar emissivi-

ties originally classified by Aires et al. (2011). Using

self-similar surface emissivity classes is defined as ‘‘S1’’

retrieval within the GPROF framework to distinguish

from ‘‘S0,’’ which assumes no knowledge of the surface

emissivity and ‘‘S2’’-type retrievals, which assume that

the surface is well characterized by ancillary data. At the

time of GPM’s launch, only the S1-type retrieval was

operational. Figure 4 shows a map of the 14 surface

emissivity classes used in GPROF 2014 for 15 February

2014. Daily snow maps from NOAA’s AutoSnow

product (Romanov et al. 2000) are used to update the

climatological surface classes defined byAires et al. LST

and TPW, as with the ocean case, are taken from the

GANAL product for the standard products, and from

ERA-Interim for the final quality-controlled climatol-

ogy products.

FIG. 3. Trends in oceanic precipitation from SSM/I and SSMIS sensors.
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High latitudes occasionally experience colder tem-

peratures than are seen by the NMQ network. Data-

bases for large sections of Siberia as well as sea ice and

sea ice edges cannot be populated using NMQ data.

These regions were populated using a combination of

satellite and model data. CloudSat data was collocated

with AMSR-E and Microwave Humidity Sounder

(MHS) data for precipitation and coincident brightness

temperatures. To make the parametric algorithm, this

set of precipitation and Tb variables was matched to a

global cloud-resolving model similar to the procedure

employed over oceans. Given the same LST, TPW, and

surface type, the model space was searched for the

closest match in surface precipitation and all available

brightness temperatures. The individual model profile

from a 1-yr simulation using the multiscale modeling

framework (MMF) (Tao et al. 2009) that best matched

each observation was used as a base for the a priori

database. Brightness temperatures were computed from

this base profile for each of the constellation satellites to

ensure consistency among sensors. This solution, of

course, is only temporary. Once GPM’s combined al-

gorithm profiles are available for one or more years, the

entire profile database will be replaced with a physical

FIG. 5. The complete GMI fully parametric algorithm flow (GPROF 2014).

FIG. 4. Surface classes defined by GPROF 2014 for a single day.
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retrieval coming from that product. This will be known

as GPROF 2016 version 1. Because the product is

physically based, Tbs for the remaining constellation

sensors can simply be computed from the available

cloud hydrometeor profiles and background condi-

tions. Version 1 of the algorithm does not compute

profile information due to the mixture of a priori in-

formation used and the inconsistency among those.

GPROF 2016 will provide vertical profile information

over all surfaces in the same way as GPROF 2010

provides profile information over oceans. The opera-

tional algorithm flow for processing the GMI obser-

vations, which is the fully parametric GPROF 2014

algorithm, is shown in Fig. 5.

a. Sensitivity tests

While the GPROF 2014 algorithm is considered fully

parametric in the sense that the scheme is consistent

among all radiometers, there are settings in the algo-

rithm that do influence the outcome. Specifically, the

sensor and forward model uncertainties and the un-

certainties in the ancillary SST and TPW used to search

the databases are not fully known. Because of this un-

certainty, the impact of each of these assumptions is

examined separately.

CHANNEL UNCERTAINTIES

The sensor noise, or noise-equivalent change in tem-

perature (NEDT), is generally measured for individual

radiometers during fabrication. These uncertainties are

on the order of 0.5–1.0K per channel and are docu-

mented for all microwave sensors in orbit today. The

forward model uncertainty is generally much larger and

generally not as well known. Over oceans, GPROF 2010

and 2014 use the residual errors seen in TMI during the

database construction (Kummerow et al. 2011) as an

estimate for the forward model error. These un-

certainties are on the order of 2–3K at 10GHz to 15K at

85GHz. Over land, the theory is even less well estab-

lished and not applicable to the current version of

GPROF since the database entries are constructed from

observed rather than simulated Tb. To establish a best

estimate for the uncertainty, GPROF 2014 used 10 days

of retrievals over the continental United States

(CONUS) and iteratively adjusted the channel un-

certainty tomaximize the fraction of retrievals that were

within 50% of the NMQ value. For consistency, this is

also referred to as the ‘‘forward model’’ uncertainty

below. While this does not correspond strictly to the

definition of forward model error, its values are equiv-

alent. Table 1 summarizes the NEDT and the forward

model errors used in the operational algorithm for the

TMI instrument as an example. Other sensors have

similar values.

There are additional uncertainties introduced as a

result of the finite number of entries in the a priori da-

tabase. These uncertainties have been estimated to be in

the 1.522.5-K range. This uncertainty becomes the

dominant term if databases are constructed with ob-

served rather than computed Tb, in which case the for-

ward model error disappears. It is not included in the

GPROF 2014 database because the method of estimat-

ing the forward model error was thought to already

contain this uncertainty.

Sensitivity tests were then run to test the impact of the

total channel uncertainty on estimated precipitation.

TABLE 2. Biases (%) relative to the reference in retrieved precipitation accumulations for January 2007 as a result of uncertainties in the

forward model error. Values are percent change in the rain rate from the reference channel errors.

Change in total uncertainty 240% 220% Reference 120% 140%

Ocean 3.37 1.42 0.00 21.43 22.12

Vegetated land 1.72 0.98 0.00 21.16 22.47

Snow covered 8.75 3.18 0.00 22.53 24.20

TABLE 1. Channel noise and forward model errors utilized in GPROF 2014 for ocean, vegetated surfaces, and snow-covered surfaces.

All values are in kelvins.

Frequency 10.7V 10.7H 19V 19H 21.3V 37V 37H 85V 85H

NEDT 0.63 0.54 0.50 0.47 0.71 0.36 0.31 0.52 0.93

Forward model error Ocean 1.2 1.5 1.7 3.0 1.7 2.7 5.1 3.6 5.5

Vegetated 12.0 7.6 12.0 7.6 20.0 2.3 11.4 1.9 5.5

Snow 30.1 42.3 20.1 42.3 14.2 18.8 25.9 5.9 15.9

Total uncertainty Ocean 1.36 1.59 1.77 3.04 1.84 2.72 5.11 3.63 5.58

Vegetated 12.0 7.6 12.0 7.6 20.0 2.32 11.4 1.97 5.58

Snow 30.1 42.3 20.1 42.3 14.2 18.8 25.9 5.92 15.9
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The total uncertainty was both increased and decreasing

by 20% and 40% for these tests. Table 2 presents biases

from a 1-month comparison relative to the reference

value from uncertainties presented in Table 1. The re-

trievals over snow appear to be most sensitive to in-

correct estimates of the forward model error. This may

be related to the already very large uncertainties esti-

mated for snow-covered surfaces.

The second source of uncertainty is due to unknown

errors in the a priori determination of TPW and the

surface temperature used to select the appropriate

subset of the a priori database. To explore the algo-

rithms sensitivity to this potential source of error, the

sensitivity of GPROF 2014 was tested for both random

and systematic errors in the a priori information. Results

are presented for all surfaces and for an ocean surface

only. Table 3 corresponds to random errors in surface

temperature and TPW. In these experiments, each pixel

is randomly assigned an offset of 1mm of TPW or 1K of

surface temperature offset from the reference value

for a 10-day period corresponding to approximately 100

million pixels. The results indicate very little sensitivity

to changes in TPW. Changes in SST are also modest but

somewhat larger. This may be attributed to a nonlinear

rain distribution as a function of SST. Lower SST bins

rain significantly less than warmer SST bins, so that a

random error in SST does not translate into a random

distribution of rain. A bias in either surface temperature

or TPW has a much more dramatic impact on the re-

trieved precipitation as represented in Table 4.

For the case of biases, particularly in the TPW, the

impact can be seen to be rather substantial. Two dif-

ferent phenomena are responsible for these biases. The

first is the emission signature of the water vapor itself.

When water vapor is assumed less than the actual vapor

(21-mm TPW), more rainwater is needed to produce

the same amount of atmospheric emission. This effect

tends to be relatively small as most of the emission is

concentrated in the 22-GHz channel. The larger effect

becomes changes in the precipitation profiles as water

vapor is increased. Whereas drier environments tend to

show precipitation rates decreasing below cloud base

as a result of evaporation, the moister environments

show greater constant rainwater content with height and

thus a greater surface rain rate for the same column

liquid water to which the passive microwave signal is

sensitive. This is equally evident in the SST biases. If

SST is artificially increased without a commensurate

water vapor increase, then the retrieval is forced into a

drier atmospheric regime (i.e., lower relative humidity)

and rain rates are seen to decrease. In practice, these

biases would probably represent a worst-case scenario

since SST and TPW from reanalyses would increase or

decrease together. The effect would therefore be less

pronounced if the database and retrieval use the same

ancillary data.

b. Algorithm performance

The algorithm is tested using GMI’s intercalibrated

(level 1C) data for all currently available microwave

imagers. Figure 6 shows oceanic zonal mean rainfall

accumulations averaged over a 3-month period (April,

May, and June 2014) for GMI, TMI, SSMIS F16, F17,

F18, and Advanced Microwave Scanning Radiometer 2

(AMSR2). Superimposed is the early version of the ra-

dar retrieval from GPM’s Ku-band radar. While there

are small variations among the different sensors, the

results are consistent with a well-functioning parametric

algorithm in that all the sensors show extremely similar

behavior. There are differences in the diurnal sampling

of the different satellites but the oceanic precipitation is

fairly sinusoidal across a 24-h period so that differences

are drastically reduced when ascending and descending

orbits are averaged as is the case in Fig. 6. The com-

parison to Ku-band radar is included only to demon-

strate the algorithm’s consistency with GPM’s early

Ku-band radar product. This is not unexpected since

the TRMM Ku-band radar product was used to create

the a priori cloud structures for the GPROF 2014 da-

tabase over oceans. There is a small but noticeable dif-

ference at very high latitudes where the Ku-band radar

may not have enough sensitivity to pick up the very light

precipitation (primarily snow) that can be found here.

The database, it should be recalled, for these regions is

based upon CloudSat precipitation rates constrained by

TABLE 3.Randomerror in retrieved rain accumulations for January

2007. Values are percent change in the rain rate.

61K surface temp 61mm TPW

Ocean only 20.92 10.06

All surfaces 20.16 10.44

TABLE 4. Systematic errors in retrieved rain accumulations for January 2007. Values are percent change in the rain rate.

21K surface temp 118 surface temp 21mm TPW 11mm TPW

Ocean 21.73 10.16 15.24 25.36

All surfaces 22.23 1.81 2.28 21.43
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AMSR-E and MHS brightness temperatures. Later

versions of the a priori database that will be based upon

actual DPR/GMI data will be needed before one can

show definitively that the constellation radiometers are

not only similar to one another but consistent with

GPM’s radar–radiometer retrieval as well. This will be

achieved in GPM’s GPROF 2016 version 1 radiometer

algorithm after approximately one year ofGPM-combined

FIG. 6. Oceanic zonal mean accumulated precipitation for GPM constellation sensors GMI,

TMI, SSMIS F16–F18, and AMSR-2. Inset values correspond to average accumulated rain

(mmmonth21). Early results from Ku-band radar also are added.

FIG. 7. Land zonal mean accumulated precipitation for GPM constellation sensors GMI,

TMI, SSMIS F16–F18, and AMSR-2. Inset values correspond to average accumulated rain

(mmmonth21). Early results from Ku-band radar also are added. Right panel includes TMI.
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retrieval profiles are collected and made available for

the a priori database.

The same zonal means for land are shown in Fig. 7,

showing very similar consistency although the Ku-band

radar result shows somewhat more rain than the con-

stellation radiometers. This may be due to the land da-

tabase having been constructed with NMQ instead of

the TRMMradar data for the creation of the database. It

is not known at this time whether NMQ is consistently

smaller than the Ku-band radar or whether rainfall over

the continental United States is statistically different

from the global rainfall captured in these zonal plots. As

with the ocean case, the absolute discrepancy will be

addressed when the databases are made consistent in

version 1 of the GPROF 2016 algorithm. The important

result is the continued consistency between microwave

constellation products.

Unlike oceans, land can have a significant diurnal

cycle that is responsible for differences between sensors.

This is illustrated by subsetting the 3-month accumula-

tions (April–June) from GMI into their hourly compo-

nents and comparing these to the polar-orbiting

satellites only for the corresponding local times. Results

are shown in Fig. 8. As can be seen, the sensor retrieval

variability over land in Fig. 7 can be explained by simply

accounting for the diurnal variability of precipitation

over land. Additional noise is introduced here because

of the reduced sampling. This is particularly noticeable

at higher latitudes in the Southern Hemisphere, which

has significantly less land than its Northern Hemisphere

counterpart.

A final assessment compares rainfall accumulations

fromGPROF 2014 constellation satellites for a 3-month

period for individual surface classes as shown in Fig. 9.

Ocean retrievals, as seen in Fig. 6, lead to very consistent

solutions among sensors. Vegetated surfaces represent

much less surface area than the oceans and the results

are thus expected to get somewhat noisier but also lead

to rather consistent results, being generally within 5% of

each other. Over snow-covered surfaces, however, there

are larger differences between AMSR2 and the other

sensors. This is particularly evident if one looks at the

maximum snow class, where AMSR2 is nearly 25%

higher than the other sensors. The maximum snow class

also represents much of the very cold surfaces where

snow is likely to be quite light and fine-grained. The

absence of channels above 89GHz likely makes it dif-

ficult for AMSR2 to distinguish light snow from snow on

the ground. While the results from GPM’s Ku-band ra-

dar are not intended to represent truth, it is evident in

the difference between the radar-derived snow increases

for the low and minimum snow categories when com-

pared to sensors with channels at 165 and 183GHz.

While still under investigation, this is likely related to

the confusion between the surface and atmospheric

signals as well.

These similarities between sensors can also be seen in

the April–June 2014 mean surface precipitation maps

shown in Fig. 10. While consistent with the accumula-

tions shown in Fig. 9, Fig. 10 was included to demon-

strate that the spatial patterns of precipitation are also

equally consistent. Small differences, of course, can be

due to sampling of individual rain systems when shown

on the global plot.

Figure 11 shows global mean precipitation for various

surface types but only for the region between 358N and

358S in order to include TRMM’s TMI sensor in the

comparison. Snow-covered surfaces are shown but rep-

resent only very minimal area coverage in this latitude

band. Additionally, the ‘‘coastline’’ surface class is in-

cluded in this figure. While accumulations in the coast-

line class appear consistent among constellation sensors,

GPROF 2014 tends to retrieve substantially less pre-

cipitation than GPM’s Ku-band radar algorithm. This is

likely due to a very poor representation of coastlines in

FIG. 8. Land diurnal accumulation of precipitation using only

GMI retrievals, but sampled at the overpass times of the other GPM

constellation conical sensors: SSMIS F16–F18 and AMSR-2.
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the a priori database given that the coastline database

was constructed from ground-based radars that tend to

systematically underestimate rain off the coast as a

function of distance from the radar. This problem is

expected to disappear once databases are generated

from GPM’s combined algorithm profiles.

LAND ALGORITHM CHARACTERIZATION

The performance of GPROF 2014 over land has not

been previously documented. A more detailed charac-

terization is thus warranted. Of particular interest is the

performance of the rain detection ability of the algo-

rithm since there were no screening procedures imple-

mented as was the case with the semiparametric

algorithm—GPROF 2010.All pixels in a particular LST,

TPW, and surface type are allowed to rain, and themean

rain rate from the Bayesian retrieval is reported as the

surface precipitation rate. Figure 12 shows the retrieval

compared to the NMQ as an example of widespread

precipitation over the United States. Other radiometers

show similar results. As can be seen, the rain discrimi-

nation appears to work quite well, even in the cold sector

of the precipitation that is identified as snow by the

ground-based radar. While the retrieval also identifies

some of the snow, the temperatures in the central part of

the band are identified as warmer in the ancillary data,

which leads the algorithm to retrieve more than 50%

liquid precipitation. The retrieval specifically outputs

FIG. 9. Bar plot including DPR Ku-band radar for different vegetated and snow surface classes.
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the fraction of the precipitation that is liquid and frozen

while the image uses a 50% threshold to select the color

scheme to apply. Because of the purely Bayesian ap-

proach, GPROF rarely reports a rain rate of 0mmh21.

The lack of light rainfall in Fig. 12 is in fact simply an

artifact of the color scale chosen for that figure, which

ends at 0.1mmh21. If lower rain rates were shown, then

the rain area retrieved by GPROF would have ex-

panded significantly. That is because the Bayesian

matching assigns weight to every raining and nonraining

profile in the a priori database and thus concludes that it

cannot unambiguously determine whether a pixel is

raining. As such, the GPROF probability of pre-

cipitation must be viewed differently.

To help with the interpretation, GPROF output

contains the probability of precipitation. This corre-

sponds to the fraction of the total weight assigned to

each pixel that corresponds to raining versus nonraining

entries in the database, which is in turn determined by

the sensitivity of the sensor used to make the database.

In GPROF 2014, because fields of view (FOVs) are

larger than the satellite- or ground-based radar pixels,

minimum precipitation in the database is approximately

0.01mmh21. Those pixels are counted as raining in the

Bayesian probability. The GPROF 2014 output, how-

ever, can report lower precipitation rates because of the

Bayesian averaging. For example, if two pixels had

equal weight in the database but one is raining at

0.01mmh21 and the other pixel is not, then GPROF

2014 would simply report a precipitation rate of

0.005mmh21 and a probability of precipitation of 50%

for this pixel. Figure 13 shows the probability of pre-

cipitation for the scene shown in Fig. 12 above. One can

see that the probability of precipitation is a continuous

function between 0% and 100%. It is also clear that the

curve is relatively steep where the actual transition oc-

curs. This implies that any probability between 40% and

60% is likely a good approximation to an instantaneous

rain assignment if such an assignment is needed for bi-

nary decision support systems.

c. Extension to sounders

The description of the algorithm here is confined to

microwave imagers. Extending the fully parametric

FIG. 10. April–June 2014 average mean surface precipitation of the GPM constellation conical sensors.
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algorithm to sounders is relatively straightforward.

While microwave imagers are often described as having

constant incidence angles, the incidence angle in fact

varies by as much as a few degree as a function of lati-

tude and orbit parameters. To accommodate this change

in incidence angle, GPROF Tbs in the a priori database

are already computed at two different incidence angles

(e.g., 52.58 and 53.58 for a radiometer in circular orbit

with a nominal incidence angle of 538). In the retrieval,

the observed Tbs are matched to the database Tb, which

is interpolated to the pixel’s observed incidence angle.

This same technique can be adapted for microwave

sounders that tend to scan across the flight direction with

variable incidence angles typically ranging from 1458
to 2458. For these sensors, the algorithm uses up to six

Tb sets computed at fixed angles and FOV sizes, and the

retrieval is done by interpolating between the appro-

priate fixed angle entries. Because Tbs are rather liner

over small changes in incidence angles, this technique is

viewed as a straightforward extension of the GPROF

FIG. 11. Bar plot including DPR Ku-band radar and TMI for broadly defined surface classes from 358N to 358S.

FIG. 12. Comparison of theGMIGPROF 2014 retrievals compared toMulti-Radar/Multi-Sensor (MRMS)-estimated

surface radar precipitation.
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algorithm described here for imagers. The sounder al-

gorithm is being phased into theGPMprocessing system

with a small delay simply to keep the algorithm team

from being overwhelmed by new products with the

launch of the GPM core satellite.

4. Summary

The fully parametric algorithm used with GPM’s im-

aging radiometers, GPROF 2014, was described and

initial performance characteristics were provided. The

oceanic database corresponds to a previous version of

GPROF and therefore offers continuity in the rainfall

product while remaining relatively consistent with

GPM’s early Ku-band radar product. Changes in the

mean rainfall or rainfall characteristics will come about

when the GPM radar/radiometer algorithm can

provide a year of consistent precipitation profiles with

which to create a new, physically consistent database for

GMI and the other constellation radiometers over

ocean, land, and high latitudes. When the new database

is added to the algorithm described here, the algorithm

will be incremented from GPROF 2014 version 1 to

GPROF 2016 version 1.

The land algorithm of GPROF 2014 is a significant

departure from existing algorithms as well as previous

versions of GPROF in that it no longer employs

screening routines to predetermine raining pixels. In-

stead, the algorithm is now fully Bayesian with all pixels

allowed to precipitate. Results appear to be very en-

couraging. It should be noted, however, that the

Bayesian algorithm weights each database entry by

the radiometric distance [see Eq. (2)] of that entry to the

observations. As such, every pixel has some level of

precipitation, albeit sometimes extremely small if the

pixel brightness temperatures are largely consistent with

nonraining database entries. The fraction of the solution

that comes from raining versus nonraining pixels in the

database is reported as the probability of precipitation in

the output. Users wishing to perform basic statistics

using probabilities of detection (POD) and false alarm

ratios (FAR) should be aware of this probabilistic rep-

resentation of the retrieval output. It is, however, a more

correct representation of the inversion algorithm as

passive microwave signatures do not often contain suf-

ficient information to give unequivocal answers as to

whether a cloud is precipitating.
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